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Abstract

In this paper, the vibration reduction for a stable inverted pendulum with passive mass–spring-pendulum-type dynamic

vibration absorber (DVA) is investigated. Results obtained contain the conventional pendulum systems as a special case.

Equivalent mass ratio established shows that the DVA on an inverted pendulum is more effective than the DVA on a

normal pendulum system. Parameters of the DVA are determined by maximizing the damping characteristic of the

combined system. The location, where the DVA has no effect is specified. Numerical simulation is done in an example of

the inverted pendulum structure in the ocean. A mass–spring inverted-pendulum-type DVA is proposed to reduce the

required length of the conventional mass–spring-pendulum-type DVA. The cell-to-cell mapping method is used in the

numerical simulation to determine the nonlinear stability domain.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of undesired-vibration reduction is known for many years and it has become more attractive
nowadays.

A tuned-mass damper (TMD), or dynamic vibration absorber (DVA), is found to be an efficient, reliable,
and low-cost suppression device for vibrations caused by harmonic or narrow-band excitations. This device
comprising a mass, springs, and viscous damper was proposed in 1909 and has been widely used in many fields
of engineering.

Since mass ratio of TMD to the primary structure is usually few percent, in TMD design stiffness and
damping ratio can be determined by balancing the two fixed points in the frequency response, in the case of
harmonic excitation, or by minimizing the mean-square response under random excitation, or by balancing
the poles of system [1–6]. It should be noted that in the classical theory of TMD the primary structure is
modeled as a spring–mass system. However, other models also are of much interest in research and
engineering applications. In particular, pendulum-type systems occurring as a model of solid body with a fixed
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.06.060

ing author.

ess: ndanh10000@yahoo.com (N.D. Anh).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.06.060
mailto:ndanh10000@yahoo.com


ARTICLE IN PRESS
N.D. Anh et al. / Journal of Sound and Vibration 307 (2007) 187–201188
fulcrum point can play an important role in many fields such as machinery, transportation, and civil
engineering.

The planar pendulum has been used to illustrate many of the basic features of dynamics. When it is
periodically forced, the pendulum can undergo an array of changes in state, including chaotic behavior. Its
importance has equally been demonstrated by many problems of practical interest that result in mathematical
models which incorporate aspects of a pendulum-like equation in one form or another; for instance, the heave-
excited roll response of a ship in waves.

The dynamic absorber for wind-induced vibration of ropeway carriers was investigated theoretically by
Matsuhisa [7]. The ropeway carrier can be regarded as a rigid-body pendulum and the theory of location was
established in 1993. The theory indicates that the effectiveness is proportional to the square of the distance of
the absorber from the center of oscillation. Consequently, the effectiveness of the dynamic absorber depends
much on its location. In the case of gondola, the center of oscillation is around the midpoint between the
center of gravity and the bottom of the gondola. It means that the absorber at the bottom of gondola does not
work well. The absorber must be located as high as possible, and even if the absorber is at the fulcrum, it
works very well. The world’s first in the world installation of the dynamic absorber on the ropeway chair lifts
was in 1995 and at present they have been installed about 20 ropeways in Japan.

As mentioned above, the pendulum-type systems are of much interest in research and engineering
applications. Hence, the problem addressed in this paper is how to extend the theory of location [7] as much as
possible to those systems. In fact, an alternative class of pendulum systems is the so-called inverted pendulum
and it is well-known. The research phenomena involved in inverted-pendulum systems are much challenging
compared to conventional pendulum-type ones, as the first can be stable or unstable while the latter can only
be stable. The (single and multiple) unstable inverted pendulum is an example dealing with classical, as well as
modern, control and with Robotics. It is challenging to design/tune stabilizing controllers for this inherently
unstable system [8–13]. The base-excited inverted pendulum has occurred in many control problems [14–17].
An aspect in the study of human locomotion is to simulate the unstable equilibrium of the trunk about the
upright position and to relate to the control law that human use during walking. The human trunk is modeled
as an inverted pendulum with up to 31 of rotational freedom. The base point of the pendulum corresponds to
the center of the pelvis and is allowed to move in three directions [17]. The problem ‘‘man–machine’’ closely
related to the balancing of an inverted pendulum has noteworthy consequences in biology, which relates to the
explanation of self-balancing of the human body [18,19] or in the construction of biped robots [20,21].

The stable inverted-pendulum-type systems can be an adequate model in civil engineering. The model of
beam supported by a linear-elastic torsion spring at one end and with a point mass at the other end is
representative of numerous applications, for example, in the analysis of the dynamic response of soil–structure
[22] or fluid–structure interactions [23]. The soil–structure interaction can be modeled by tension springs while
in the fluid–structure interaction the torsion springs are due to buoyancy forces. If the bending stiffness of the
beam is large enough, one may use the model of inverted pendulum with a linear-elastic torsion spring. In Ref.
[23], the response of an articulated tower in the ocean subjected to deterministic and random wave loading was
investigated. The tower was modeled as an upright rigid pendulum with a concentrated mass at the top and
having one angular degree of freedom about a hinge with Coulomb damping which can be replaced
approximately by an equivalent linear viscous one. Compliant platforms such as articulated towers are
economically attractive for deep-water conditions because of their reduced structural weight compared to
conventional platforms. The foundation of the tower does not resist lateral forces due to wind, waves, and
currents; instead, restoring moments are provided by a large buoyancy force, a set of guy-lines or a
combination of both [24–27].

It should be noted that in all above-mentioned researches, the use of dynamic absorbers as an additional
tool for vibration control was not considered. Thus, the control problem of unstable and stable inverted-
pendulum-type systems using different kinds of dynamic absorbers such as passive, semi-active, and active
ones might be an aspect of high interest.

In the paper the vibration control problem for a stable inverted pendulum with passive mass–spring-
pendulum-type DVA is investigated. The equation of motion is expressed in the dimensionless form. The
equivalent mass ratio is established and shows that effect of DVA is proportional to the square of distance
from DVA to the center of oscillation. In practice, the distance between DVA and center of oscillation in
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inverted-pendulum case is larger than the distance in conventional pendulum case. Parameters of DVA are
chosen by maximizing the damping characteristic of the system. By using the concept of equivalent mass or
damping ratio, the location where DVA has no effect is showed. Numerical simulation is done for an example
of the articulated tower in the ocean. In the example, to reduce the vibration of main structure, conventional
mass–spring-pendulum-type DVA requires a long pendulum arm. To address the problem, mass–spring
inverted-pendulum-type DVA is considered and good effect is obtained.
2. Equation of motion

2.1. Mass– spring-pendulum-type DVA

As shown in Fig. 1, inverted-pendulum structure has a concentrated mass m at the top and one degree of
freedom y about z-axis.

The concentrated mass is supported by a beam. We consider the case where the beam-bending stiffness is
large enough so that the beam can be modeled as a rigid rod which has length l and uniform mass per unit
length r. The viscous structural damping constant is denoted by Cs. To keep the structure in a stable upright
position, a restoring moment is produced by a torsion spring with spring constant K. The dynamic absorber
has mass–spring-pendulum type with mass md, length ld, spring constant kd, and damping constant cd. DVA is
attached to the structure through a differential pulley mechanism to eliminate the geometric nonlinearity of
spring and damping device. Similar mechanism has been proposed in Ref. [28]. The pulley’s radius is assumed
as r. Strings and pulley do not have slip. Denote the angular variation of the dynamic absorber with respect to
the main structure as yd. Taking the coordinate system as shown in Fig. 1, the positions of the structure (x,y)
and the dynamic absorber (xd, yd) is obtained easily:

x ¼ l sin y; y ¼ l cos y,

xd ¼ ld sinðyd � yÞ þ d sin y; yd ¼ d cos y� ld cosðyd � yÞ. ð1Þ

To obtain the kinetic energy and potential energy of the supported rod, consider its elemental length ds,
which is located at distance of s from the rotating point. Position and the mass of the elemental length ds are,
respectively,

xbðsÞ ¼ s sin y; ybðsÞ ¼ s cos y; dmb ¼ rds. (2)
x

y

θ

l

m

md

θd

d ld

cd
kd

K

2r

Fig. 1. Inverted-pendulum structure with mass–spring-pendulum absorber.
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Kinetic energy KE, potential energy PE and dissipative energy DE are expressed as follows:

KE ¼
1

2
mð _x2 þ _y2Þ þ

1

2
mdð _x

2
d þ _y2

dÞ þ
1

2

Z l

0

½ð _xbðsÞÞ
2
þ ð _ybðsÞÞ

2
�rds

¼
1

2
ml2 _y

2
þmdd2 _y

2
þmdl2d ð

_y� _ydÞ
2
þ 2mddld

_yð_yd �
_yÞ cos yd þ

1

3
rl3 _y

2
� �

, ð3Þ

PE ¼ mgyþmdgyd þ
Ky2 þ kd ðrydÞ

2

2
þ

Z l

0

rgybðsÞds

¼
1

2
ðKy2 þ kdr2y2d þ ð2ml þ 2mdd þ rl2Þg cos y� 2mdldg cosðy� ydÞÞ, ð4Þ

DE ¼ Cs
_y
2
þ cd ðr_yd Þ

2. (5)

When the structure is excited by external moment M(t), the equations of motion of the inverted-pendulum
DVA are derived using Lagrange’s equations:

d

dt

qKE

qy

� �
�

qKE

qy
þ

qPE

qy
þ

qDE

q_y
¼MðtÞ, (6)

d

dt

qKE

q_yd

� �
�

qKE

qyd

þ
qPE

qyd

þ
qDE

q_yd

¼ 0. (7)

Substituting Eqs. (3)–(5) in Eqs. (6)–(7) results in

ml2 €yþ
rl3

3
€y�mdl2d

€yd þmdðd
2
þ l2dÞ

€yþmddld cos ydð
€yd � 2€yÞ þmddldð2_y� _yd Þ

_yd sin yd þ Cs
_yþ Ky

� ml þmdd þ
rl2

2

� �
g sin yþmdldg sinðy� ydÞ ¼MðtÞ, ð8Þ

ðmddld cos yd �mdl2dÞ
€yþmdl2d

€yd þ kdr2yd �mdldd _y
2
sin yd �mdldg sinðy� ydÞ þ cdr2 _yd ¼ 0. (9)

The governing equations (8) and (9) are used in the numerical calculation. However, in order to determine
DVA’s parameters, governing equations are linearized and the structural damping is ignored. This implies that
DVA is only designed to reduce the undamped vibration of the tower in the linear case. The effect of DVA in
the nonlinear case must be checked by numerical calculation. Neglecting the terms of higher power and
ignoring structural damping, linearized equations corresponding to Eqs. (8) and (9) can be rewritten in the
matrix form:

ml2 þ rl3

3
þmdðd � ldÞ

2 mddld �mdl2d

mddld �mdl2d mdl2d

2
4

3
5 €y

€yd

" #
þ

0 0

0 cdr2

" # _y

_yd

" #

þ
K �mgl � rgl2

2
�mdgðd � ldÞ �mdgld

�mdgld kdr2 þmdgld

2
4

3
5 y

yd

" #
¼

M tð Þ

0

" #
. ð10Þ

Introducing the dimensionless parameters

m ¼
md

mþ rl=3
; g ¼

d � ld

l
,

os ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

ml2 þ rl3=3
�
ð6mþ 3rlÞg

6ml þ 2rl2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6K � glð6mþ 3rlÞ

2l2ð3mþ rlÞ

s
,

od ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kdr2

mdl2d
þ

g

ld

s
; x ¼

cdr2

2mdod l2d
; a ¼

od

os

; Z ¼
g

o2
s l
, ð11Þ
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where m is the mass ratio, g specifies the position of the dynamic absorber, os is natural frequency of the
structure, od and x are atural frequency and damping ratio of DVA, respectively, a is natural frequency ratio,
Z specifies the distribution of mass of the structure, and further defining

u ¼ ly; ud ¼ ldyd . (12)

Eq. (10) can be rewritten in the dimensionless form:

1þ mg2 mg

mg m

" #
€u

€ud

" #
þ os

0 0

0 2xam

" #
_u

_ud

" #
þ o2

s

1� mgZ �mZ

�mZ ma2

" #
u

ud

" #
¼

3MðtÞ

3mlþrl2

0

" #
. (13)

Matrix equation (13) can be used in the design of DVA.

2.2. Mass– spring inverted-pendulum dynamic absorber

In many cases, required length of dynamic absorber in Fig. 1 is too long because of the long period of the
structure. The mass–spring inverted-pendulum type dynamic absorber as shown in Fig. 2 can solve this
problem. The structure in Fig. 2 is similar to that of Fig. 1, but the absorber is inverted. Suppose that the
supported rod for DVA mass md can be neglected. The motion equations in this case are obtained from Eqs.
(8) and (9) by replacing ld with �ld.

As seen from Eq. (11) natural frequency od of absorber can be reduced without increasing length ld.

3. Stability analysis

3.1. Linear analysis

The stability analysis in the linear case focuses on the linearized dimensionless Eq. (13). There are some
stability criteria. We use here the stability criterion according to Lyapunov matrix equation. The criterion is
given by the following conditions:
�
 Damping matrix is a symmetric positive-semi-definite matrix;

�
 Stiffness matrix is a symmetric positive-definite matrix.
Using the matrices in Eq. (13) one obtains the stability condition:

1� mgZ40;

ð1� mgZÞma2 � m2Z240:

(
(14)

Because m40, the stability condition is reduced to

ð1� mgZÞa2 � mZ240. (15)
θ

m

md

θd

ld

cd

kd

Fig. 2. Inverted-pendulum structure with mass–spring inverted-pendulum absorber.
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Stability condition (15) gives limit values for system parameters. For example, if position of absorber is too
high (g too large), structure–absorber system will be unstable.

3.2. Nonlinear analysis

The above analytical investigations of motion stability often focus on local solution regions surrounding
equilibrium or critical points. These results are applicable to small perturbations case, in which the linear
approximation is suitable. Global analysis, or analysis of large-amplitude motions, is usually studied by
numerical methods. One of the effective ways is Hsu’s cell-to-cell mapping method [29]. This method divides
the operating domain of the nonlinear system into a large number of smaller regions or ‘‘cells’’. The
trajectories from one cell to another create a so-called cell-to-cell map. This map shows the cells that have a
high probability of moving into the equilibrium point. Some fundamental concepts and properties of the cell-
to-cell mapping method are briefly discussed below. Fig. 3 illustrates a two-dimensional grid of cells that might
be used to create a cell-to-cell map.

The state space is divided into four rectangular cells. Some trajectories are computed for each cell. The
trajectory begins at a point within the cell and ends after a specified time period. The association between the
starting cell and the endpoint cell determines one element of the cell-to-cell map. The illustration is seen from
Fig. 3, where two trajectories are shown starting from within each cell. The cell-to-cell map F for the system in
Fig. 3 would be represented numerically by a four-by-four matrix, whose columns and rows represent the
endpoint cells and the starting cells, respectively. The cell map can be interpreted in a probabilistic sense. For
example, if the initial condition of the nonlinear system is located within cell 3, then Fig. 3 shows that the
solution at the next time step will lie in cell 2 with probability 1/2 and in cell 4 with probability 1/2. Using this
probabilistic interpreter for other cells, we obtain the cell map F as

F ¼

0 0 0 0

1=2 1 1=2 0

0 0 0 0

0 0 1=2 0

2
66664

3
77775

The evolution of the cell-to-cell mapping as time increases is specified by the probability vector p. The
number of elements in p will be equal to the number of cells in the cell-to-cell map and the numerical value of
an element in p is defined as the probability that a solution of the nonlinear system lies within the associated
domain cell. The probability vector p representing the system in Fig. 3 has the form

pð0Þ ¼ 1=4 1=4 1=4 1=4
h iT

; pð1Þ ¼ 0 1=2 0 1=8
h iT

,

pð2Þ ¼ pð3Þ ¼ � � � ¼ pð1Þ ¼ 0 1=2 0 0
h iT

.

It shows that after two steps, four trajectories (a half of the initial trajectories) lie in cell 2 and four
remaining trajectories leave the cell domain. The probability vector has the following property:

pðk þ 1Þ ¼ FpðkÞ. (16)

The one-step index represents a time increment of the specified time period of each trajectory. Hsu devised
two important concepts called absorbing cells and transient cells. A transient cell has the property that once a
2

1 3

4

Fig. 3. An example of the cell mapping.
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solution leaves the cell, it does not return. An absorbing cell has the property that once a solution enters the
cell, it does not leave. Therefore, only the absorbing cell has the steady-state probability vector. From Eq. (16),
one can see that the steady-state probability vector p� will satisfy

p� ¼ Fp�3ðI � FÞp� ¼ 0. (17)

Eq. (17) shows that p� must be an eigenvector of cell-to-cell map matrix F. These special eigenvectors are
associated with eigenvalues equal to unity. The non-zero elements of p� point to the absorbing cells in the map.
Once the absorbing cells have been found, probability vector can be sorted into absorbing and transient cells.
Let pa represent probability vector elements associated with absorbing cells and let pt represent those
associated with transient cells. Eq. (17) can then be written in the following form:

paðk þ 1Þ

ptðk þ 1Þ

" #
¼

Faa Fat

0 Ftt

" #
paðkÞ

ptðkÞ

" #
. (18)

The solution is

paðk þ 1Þ ¼ FaapaðkÞ þ FatðFttÞ
kptð0Þ. (19)

Recall that the unit-amplitude eigenvalues of F serve to locate the absorbing cells. Therefore, Faa will
contain unit-amplitude eigenvalues and the remaining eigenvalues, which are also the eigenvalues of Ftt, will
have amplitude less than unity. From Eq. (19) we see that when k-N, (Ftt)

k-0 and trajectories starting
from transient cells will pass into the absorbing cells. The probability that a solution starting in a transient cell
will eventually pass into an absorbing cell is defined by the matrix

R ¼
X1
k¼0

FatðFttÞ
k
¼ FatðI � FttÞ

�1. (20)

The (i, j) element of R represents the probability for solutions from transient cell j to pass into absorbing cell
i. The list of transient cells that have a high probability of moving into an absorbing cell determines the basin

of attraction for the absorbing cell. In summary, the cell-to-cell mapping method in this paper contains the
following step:
�
 Step 1: Divide the domain of interest into cells.

�
 Step 2: Compute the cell-to-cell map matrix F by solving a series of nonlinear system equation. Entry Fji is

the number of trajectories that end in cell j divided by the total number of trajectories that were started
from cell i.

�
 Step 3: Find the unit-amplitude eigenvalues of F, as well as their associated eigenvectors p�. The non-zero

elements of p� point to the absorbing cells.

�
 Step 4: Sort the probability cell vector such that F is decomposed into the form of Eq. (18). This

manipulation defines Fat and Ftt.

�
 Step 5: Compute the absorption matrix R using Eq. (20) to determine the basin of attraction for the

absorbing cell.

4. Equivalent mass ratio

Efficiency of DVA depends on parameters of the primary system and DVA itself. When parameters of the
primary system and mass ratio m are fixed, efficiency of DVA can be defined by the equivalent mass ratio as
follows. Let

MðtÞ ¼ A sin ot; uðtÞ ¼ U sin ot; udðtÞ ¼ Ud sin ot. (21)

Substituting Eq. (21) into Eq. (13) and neglecting damping term yields

�o2
1þ mg2 mg

mg m

" #
U

Ud

" #
þ o2

s

1� mgZ �mZ

�mZ ma2

" #
U

Ud

" #
¼

3A

3mlþrl2

0

" #
. (22)
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One gets from Eq. (22)

U

Ud

" #
¼

3A

3mlþrl2
ða2o2

s�o
2Þ

D

3A

3mlþrl2
ðgo2þZo2

s Þ

D

2
64

3
75; D ¼ o2

so
2
d 1�

o2

o2
s

� �
1�

o2

o2
d

� �
� m Zþ g

o2

o2
s

� �
gþ Z

o2

o2
s

� �� �
. (23)

The purpose of the absorber is to reduce the large peak of resonant vibration at os. Therefore, natural
frequency of absorber is tuned to be the similar frequency. In the resonant frequency domain one has
o � os � od . Thus from Eq. (23) we obtain

D � o2
so

2
dmðZþ gÞ2 ¼ o2

so
2
dme, (24)

where equivalent mass ratio is defined by

me ¼ mðZþ gÞ2. (25)

Efficiency of DVA depends on the termgþ Z. Using Eq. (11), one gets

gþ Z ¼
d � ld

l
þ

g

o2
s l
¼

d � ld þ le

l
, (26)

where equivalent length of pendulum is defined by

le ¼
g

o2
s

¼
2gl2ð3mþ rlÞmd

6K � glð6mþ 3rlÞ
. (27)

It is clearly seen from Eq. (26) that the location of DVA, namely, d�ld is an important factor and the larger
the d�ld, better the efficiency of DVA. When the location of absorber on an inverted pendulum is above the
fulcrum, d�ld40. In a case of normal pendulum with the absorber which is located below the fulcrum,
d�ldo0. Therefore, it can be concluded that the performance of DVA on an inverted pendulum is better than
on a normal pendulum system.

5. Optimal tuning for free vibration

As mentioned in Introduction, the concepts for designing DVA are several. Here, the idea is to improve the
damping characteristic of the primary system using DVA [4–6]. The characteristic polynomial corresponding
to Eq. (13) is given by

PðlÞ ¼ Det l2
1þ mg2 mg

mg m

" #
þ los

0 0

0 2xam

" #
þ o2

s

1� mgZ �mZ

�mZ ma2

" # !
, (28)

or

PðlÞ ¼ a4l
4
þ a3l

3
þ a2l

2
þ a1lþ a0, (29)

where

a4 ¼ 1; a3 ¼ 2að1þ g2mÞxos; a2 ¼ ð1þ a2 þ a2g2mþ gZmÞo2
s ,

a1 ¼ 2axo3
s ð1� gZmÞ; a0 ¼ o4

s ða
2 � Z2m� Za2gmÞ. ð30Þ

The roots of the polynomial P(l) are called the poles of system (structure and absorber). If the system is
stable, these poles must have negative real parts, i.e. must lie in the left half of the complex plane. It is known
that the real parts of the poles show the attenuation of the system response and the imaginary parts of the
poles show the number of oscillation cycles. Therefore, the magnitudes of the real parts should be as large as
possible and the magnitudes of the imaginary parts should be as small as possible. We will show that the case
corresponding to four repeated negative real poles is optimal. This optimal design is carried out in 3 steps.
Firstly, the DVA’s spring constant is tuned to make the repeated real parts. Secondly, DVA’s damping
constant is tuned to make the repeated magnitudes of imaginary parts. Lastly, the other DVA’s parameters are
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tuned to make the imaginary parts zero. The mathematical explanation of the optimal design is presented
below. Denoting the roots of P(l) by li (i ¼ 1,y,4), which can be real or complex. In any case, we have

�
X4
i¼1

ReðliÞ ¼ a3 ¼ 2að1þ g2mÞxos, (31)

) min
i¼1;::4
ðjReðliÞjÞp

að1þ g2mÞxos

2
. (32)

Considering Eq. (11), we can see that the right-hand side of Eq. (32) does not depend on DVA’s spring
constant kd. Since we want real parts large, in the first step, DVA’s spring constant is tuned to make Eq. (32)
become an equality. This means that all real parts of poles have the same value. We denote the repeated real
part by d0. In this case, the system poles are 2 complex conjugate pairs. We denote these poles by d07id1 and
d07id2, where d1 and d2 are corresponding imaginary parts. After tuning to the repeated real parts case, we
will show that DVA’s damping constant cd should be tuned to equalize the imaginary parts d1 and d2. We have

PðlÞ ¼ ððl� d0Þ
2
þ d21Þððl� d0Þ

2
þ d22Þ. (33)

Comparing Eqs. (29) and (33), using Eq. (30) yields

�4d0 ¼ 2að1þ g2mÞxos, (34)

6d20 þ d21 þ d22 ¼ ð1þ a2 þ a2g2mþ gZmÞo2
s , (35)

�4d30 � 2d0ðd
2
1 þ d22Þ ¼ 2axo3

s ð1� gZmÞ. (36)

ðd20 þ d21Þðd
2
0 þ d22Þ ¼ o4

s ða
2 � Z2m� Za2gmÞ (37)

Eliminating x, a and d0 from Eqs. (34)–(37), we obtain the relation between imaginary parts d1 and d2:

6
o2

s ð1�gZmÞ
ð1þg2mÞ

� 2ðd21 þ d22Þ � ð1þ gZmÞo2
s

o2
s ð1�gZmÞ
ð1þg2mÞ

þ
d2
1
�d2

2
2

� �
o2

s ð1�gZmÞ
ð1þg2mÞ

þ
d2
2
�d2

1
2

� �
þ Z2mo4

s

¼
ð1þ g2mÞ
ð1� ZgmÞo2

s

. (38)

By using an evident inequality

o2
s ð1� gZmÞ
ð1þ g2mÞ

þ
d21 � d22

2

� �
o2

s ð1� gZmÞ
ð1þ g2mÞ

þ
d22 � d21

2

� �
p

o2
s ð1� gZmÞ
ð1þ g2mÞ

� �2
(39)

after some manipulation from Eq. (38), we obtain

d21 þ d22X
4ð1� gZmÞ2 � mðZþ gÞ2

2ð1þ g2mÞð1� gZmÞ
o2

s , (40)

) max
i¼1;2
ðd2i ÞX

4ð1� gZmÞ2 � mðZþ gÞ2

4ð1þ g2mÞð1� gZmÞ
o2

s . (41)

The right-hand side of Eq. (41) does not depend on DVA’s damping constant cd. Since we want magnitudes of
imaginary parts to be small, in the second step, DVA’s damping constant is tuned to make Eq. (41) become an
equality, i.e. d1 ¼ d2.

d1 ¼ d2 ¼ os

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1� gZmÞ2 � mðZþ gÞ2

4ð1þ g2mÞð1� gZmÞ

s
. (42)

To make d1 and d2 real, we need

2ð1� gZmÞX
ffiffiffi
m
p
jZþ gj. (43)
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In the last step, the remaining DVA’s parameters m and g should be chosen to make d1 ¼ d2 ¼ 0. This means
inequality (43) becomes an equality. However, in most of the practical applications, we have mo5%, |g|o1,
and (1�gZm) must be large enough due to stability condition, then 2ð1� gZmÞb

ffiffiffi
m
p
jZþ gj. Therefore, in most

cases, the last step of the optimal design could not be carried out. In summary, we only achieve the repeated
complex poles case, not the repeated real poles case. Substituting Eq. (42) in Eqs. (34)–(37), we obtain the real
part d0, optimal DVA’s damping ratio xopt and optimal DVA’s frequency ratio aopt:

aopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� gZmÞ2 þ mZ2ð1þ g2mÞ2

q
ð1þ g2mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� gZm
p , (44)

xopt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðgþ ZÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ g2mÞ½ð1� gZmÞ2 þ mZ2ð1þ g2mÞ2�

q , (45)

d0 ¼ �
os

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðgþ ZÞ2

ð1� gZmÞð1þ g2mÞ

s
. (46)

We also note that stability condition (15) is satisfied with the solution (44) as

ð1� mgZÞa2 � mZ2 ¼
ð1� gZmÞ2 þ mZ2ð1þ g2mÞ2

ð1þ g2mÞ2
� mZ2 ¼

ð1� gZmÞ2

ð1þ g2mÞ2
40. (47)

In the optimal condition case, as described, all four system-damping ratios have the same value:

xi ¼ �
Reli

jlij
¼

�d0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d20 þ d21

q ¼
�d0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d20 þ d22

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðgþ ZÞ2

q
2ð1� mgZÞ

ði ¼ 1; . . . ; 4Þ. (48)

As discussed above, we have 2ð1� gZmÞb
ffiffiffi
m
p
jZþ gj. Then the damping ratio is less than 1 in most cases.

Using Eqs. (27), (26) and (11), we express the damping ratio by the physical variables

xi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml2ðd � ld þ leÞ

2
q
2ðl2 � mleðd � ldÞÞ

ði ¼ 1; . . . 4Þ. (49)

It is seen from Eq. (48) (and also from Eq. (25)) that when g is equal to �Z, absorber has no effect. This
situation is explained as follows. At the special point, where g is equal to �Z, the inertial force and the gravity
force acting on DVA are balanced. So the vibration of the structures does not excite the DVA and, conversely,
DVA does not excite or mitigate the vibration of structure either. This can be seen from the second equation of
Eq. (13). The inertial force acting on the absorber is mg €u and the gravity force is �o2

smZu. When the main
structure vibration has frequency os, we have €u ¼ �o2

s u. The total external force acting on the absorbers is
�mo2

s uðgþ ZÞ. At the location, where gþ Z ¼ 0, no force acts on the mass of the absorber. Relative
displacement between absorber and structure cannot be maintained and absorber does not work at all at the
resonant frequency os. From Eqs. (25) and (26), it can be seen that the effect of absorber is proportional to the
square of distance of the absorber from the center of oscillation. This special effect was indicated in the theory
of location [7], which is presented in Introduction

6. Example

One of the examples of inverted pendulum is the articulated tower in the ocean. Compliant platforms such
as articulated towers are economically attractive for deep-water conditions because of their reduced structural
weight compared to conventional platforms. The foundation of the tower does not resist lateral forces due to
wind, waves and currents; instead, restoring moments are provided by a large buoyancy force. The
environmental loadings, e.g. wind and wave, may occur or stop at random. Thus, DVA can be installed in the
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Fig. 4. Model of the articulated tower.
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articulated tower to increase the damping characteristic. Consider an articulated tower as shown in Fig. 4. The
figure consists of a tower submerged in the ocean having a concentrated mass mt at the top. Assuming that the
tower stiffness is infinite (EI ¼N), the friction in the pivot is ignored. The tower has a uniform mass per unit
length r, length l and diameter D. Tower diameter is much smaller than its length (D5l). End mass mt is
considered to be concentrated at the end of the tower.

Using stability condition (13), one can check if the structure is statically stable or not. It is seen from Fig. 4
that restoring moment Mb produced by buoyancy force is determined by

Mb ¼ rwg
pD2

4

l2s
2
sin y, (50)

where rw is mass density of fluid and ls is length of the submerged part of the tower. Considering that y is
small, length ls is approximated by height elevation h and sinyEy. From Eq. (50), it is easy to find the spring
constant of the equivalent torsion spring:

K ¼ 1
8
prwgh2D2. (51)

We use the following numerical data [24]: tower length l ¼ 400m, tower diameter D ¼ 15m, tower uniform
mass per unit length rr ¼ 20� 103 kg/m, end mass mt ¼ 2.5� 105 kg, mean water level h ¼ 350m, water
density rw ¼ 1025 kg/m3, structural damping is 2%. Equivalent torsion spring constant is calculated from
(51):

K ¼ 1:1� 1011 Nm, (52)

Natural frequency of the tower is calculated from (11):

os ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6K � glð6mþ 3rlÞ

2l2ð3mþ rlÞ

s
¼ 0:44 rad=s. (53)

To reduce the vibration of the tower, a dynamic absorber is proposed to be installed inside the box of the
tower’s column. If the mass–spring-pendulum-type absorber is used, the required length of pendulum is too
long (about 50m) because of the long period of the tower. So, mass–spring inverted-pendulum-type absorber
is used as shown in Fig. 5.

Assuming that absorber’s mass is about 5.8� 104 kg (m ¼ 2%), length of absorber ld is fixed at 15m,
absorber is located at distance d ¼ 350m from the seabed, pulley’s radius r is taken 2m. Parameters of the
DVA are obtained by the method discussed in Section 5. From Eqs. (44) and (45), one obtains 2 dimensionless
parameters of the absorber:

aopt ¼ 0:983; xopt ¼ 0:145. (54)

Physical parameters of DVA are obtained from Eq. (11). Because absorber has inverted pendulum type, we
must replace ld with �ld in all expressions. We have

kd ¼ md a2opto
2
s þ

g

ld

� �
l2d
r2
¼ 2:75� 106 N=m; cd ¼ 2xoptmdaoptos

l2d
r2
¼ 4:14� 105 Ns=m. (55)
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As seen from Eq. (47), linearized system is stable. Large amplitude motions are analyzed by cell-to-cell
mapping method as discussed in Section 3. The motion equations (8) and (9) require four-dimensional state
space domain. The domain of interest is selected such that |y|oymax ¼ 0.03 rad, j_yjoosymax, |yd|o ydmax ¼ p/
6 rad, j_yd joosydmax. The selected domain covers the maximum tower response, 5� 10�3 rad, due to significant
wave height of 15m [24]. The complete four-dimensional cell map, however, takes much memory and time to
create. The high-dimensional cell map also leads to difficulty in the eigenvalues calculation and in results
visualization. The most common approach is to reduce state variables of interest. In this paper, we consider
two variables describing the motion of structure such as y and _y. Therefore, the state space domain is divided
such that, two dimensions of variables y and _y have 21 divisions and two remaining dimensions of variables yd

and _yd have only 1 division. One hundred trajectories are started from each domain cell. The nonlinear motion
equations are solved 44,100 times in total. Each trajectory was followed for 15 s. Because only two variables y
and _y are considered, the initial conditions of y and _y are generated randomly in each domain cell and the
initial conditions of yd and _yd are fixed.

The first set of DVA’s initial conditions is chosen as yd(0) ¼ 0 and _ydð0Þ ¼ 0. This set has the effect of
forcing DVA to have no initial relative motion with respect to the structure. A second set of DVA’s initial
conditions is chosen as yd(0) ¼ �y(0) and _ydð0Þ ¼ �_yð0Þ. This set has the effect of forcing DVA to stay at
equilibrium position at the beginning of each trajectory. Fig. 6 shows the probability of absorption into the
absorbing cell, which is located on the equilibrium point. The results are similar in two cases. In the figure, a
dark-shaded transient cell indicates a higher probability of being absorbed. The darkest region, therefore,
describes the basin of attraction. We can see that the motion trajectories of the combined system (structure
and DVA) might leave the domain considered if the initial deflection of structure exceeds 0.01 rad or the initial
angular velocity of structure exceeds 5� 10�3 rad/s.
Fig. 6. Absorption probability for equilibrium point in the case of yd(0) ¼ 0,_yd ð0Þ ¼ 0 (left) and in the case of yd(0) ¼ �y (0), _yd ð0Þ ¼

�_yð0Þ (right).

d

mt

kd

cd

md

Fig. 5. Mass–spring absorber locates inside the column box.
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Figs. 7 and 8 show the time response of the tower’s deflection and the absorber’s deflection induced by the
initial velocities of 1.5� 10�3 and 3� 10�3 rad/s.

It can be seen that, large initial velocity leads to nonlinearity of DVA and decreases effect of DVA. The
forced response of the tower is often induced by wave load. However, calculations of wave load are
Fig. 7. Time response of the tower with initial velocity 1.5� 10�3 rad/s (left) and 3� 10�3 rad/s (right).

Fig. 8. Time response of the absorber with initial velocity 1.5� 10�3 rad/s (left) and 3� 10�3 rad/s (right).

Fig. 9. Time response of the tower (left) and the absorber (right) in the case of random excitation.
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beyond the scope of this study. Instead of this, the random white noise external moment is applied to the
structures.

The response of the tower induced by wave load has been studied in Ref. [24], which shows that the
maximum tower response is about 5� 10�3 rad due to significant wave height of 15m. Therefore, the white
noise intensity is chosen to make the same scale of the tower response. Fig. 9 shows the time response of the
tower’s deflection and absorber’s deflection induced by the random white noise external moment. The figure
shows that the mass–spring inverted-pendulum-type DVA also has good effect in case of random excitation.
DVA’s deflection is still in safety region (|yd|op/6E0.52 rad).
7. Conclusion

The purpose of this paper is to study the vibration reduction for a stable inverted pendulum with passive
mass–spring-pendulum-type DVA. Optimal parameters for DVA are chosen in order to maximize the
damping properties of DVA–primary structure system. The result obtained shows the relationship between
DVA’s effectiveness and its location. There is a location of DVA, where the vibration of main structure has no
excitation on DVA and DVA has no effect at all. In a numerical simulation of the inverted pendulum structure
in the ocean, the idea of mass–spring inverted-pendulum-type DVA is proposed. The stability is analyzed by
Lyapunov criterion in linear case and by cell-to-cell mapping method in general nonlinear case. It is obtained
that the proposed type DVA has good effect in reducing free vibration and forced vibration due to white noise
excitation. The influence of wave load, beam stiffness, damping at the pivot, added mass, mass of supported
rod for inverted DVA and other effects may be subjects for further investigations. The problem will be more
sophisticated for unstable inverted pendulum systems.
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